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Modified Kuramoto-Sivashinsky equation: Stability of stationary solutions
and the consequent dynamics
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We study the effect of a higher-order nonlinearity in the standard Kuramoto-Sivashinsky equation: &xé(HX).
We find that the stability of steady states depends on dv/dg, the derivative of the interface velocity on the wave

vector ¢ of the steady state. If the standard nonlinearity vanishes, coarsening is possible, in principle, only if G
is an odd function of H,. In this case, the equation falls in the category of the generalized Cahn-Hilliard

equation, whose dynamical behavior was recently studied by the same authors. Alternatively, if G is an even
function of H,, we show that steady-state solutions are not permissible.
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I. INTRODUCTION

One of the most prominent and generic equations that

arises in nonequilibrium systems is the Kuramoto-
Sivashinsky (KS) [1-3] equation
H,+H,. +H,+HH =0, (1)

where H is some scalar function (like the slope of a one-
dimensional growing front) and differentiations are sub-
scripted. The linear stability analysis of the KS equation
(by looking for solutions in the form of e™**®') yields
w=g¢*—q"*. The (linearly) fastest-growing mode has a wave
number given by ¢,=1/+2 (obtained from d,w=0). For a
large box size the KS equation is known to exhibit spa-
tiotemporal chaos. The chaotic pattern statistically selects a
length scale which is close to 27/¢q,: in fact, the structure

factor (|flq|2), where (---) designates the average over many

runs and I:Iq is the Fourier transform of H, exhibits a maxi-
mum around g=g¢g,. Other nonequlibrium equations are
known, however, to exhibit different dynamical behaviors:
just to limit ourselves to one-dimensional systems, we may
have coarsening, a diverging amplitude with a fixed wave-
length, a frozen pattern, traveling waves, and so on.

An important issue is the recognition of general criteria
that enable one to predict whether or not coarsening takes
place within a class of nonlinear equations, without having to
resort to a forward time-dependent calculation. In recent
works [4,5] we have considered several classes of one-
dimensional partial differential equations (PDE’s), having
the form H,=A[H], where N is a nonlinear operator acting
on the spatial variable x.

Sometimes, even in the presence of strong nonlinearities,
the search for steady states reduces to solving a Newton-type

equation H:x+ V(H*)=0, where H" is some function of H. In
these cases, A(A), giving the dependence of the wavelength A
of the steady state on its amplitude A, is a one-value function
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(see Fig. 1, solid lines), and the criterion for the existence of
coarsening is expressed in terms of the derivative \'(A).

It has been shown that the sign of —\’(A) is the same as
that of the phase diffusion coefficient. Thus \’(A) >0 corre-
sponds to a branch which is unstable with respect to the
phase of the pattern, entailing thus coarsening. The situation
is more complicated when \(A) exhibits a fold (see Fig. 1,
dashed line). This event occurs, e.g., in the KS equation and
in the Swift-Hohenberg equation. As for the KS equation,
which is the topic of this paper, Nepomnyashchii [1] has
shown that the forearm part of the curve \(A) with positive
slope, \'(A) >0, is an unstable branch. This result holds for
the pure KS equation, however [6].

The aim of this paper is the following. (i) First, we shall
extend the result of Nepomnyashchii [1] to a generalized
form of the KS equation, which includes higher-order non-
linearities. The KS equation has been derived in a number of
physical problems, including hydrodynamics, crystal growth,
chemical waves, etc. (for a review, see Ref. [7]). The KS
equation is valid to leading order in the expansion. Next
nonlinear terms may affect dynamics. Indeed, the next lead-
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FIG. 1. The periodic stationary solutions of some classes of
nonlinear equations that satisfy a Newton-type equation
H;+ V(H")=0, and the resulting \(A) is a single-value function.
According to the explicit form of V(H"), we may have the different
curves shown as solid lines. The dashed line, which displays a fold,
corresponds to a non-single-value function. It comes out in the
Kuramoto-Sivashinsky and Swift-Hohenberg equations. Units on
both axes are arbitrary.
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ing term in the KS equation (H,H,,) has been analyzed in
[8], and it has been shown that this term significantly affects
the dynamics; for example, the profile may exhibit deep
grooves. We shall consider a more general form of the modi-
fied KS equation by adding a term like d,G(H,) (this in-
cludes as a particular case the term H,H,,). We find that the
stability of the steady-state solutions depends on v'(g),
where v has, in a front problem, the meaning of the average
interface velocity. (ii) If the standard KS nonlinearity van-
ishes (no HH, term), then there is coarsening if G is an odd
function. In this case a mapping of the equation onto a gen-
eralized Cahn-Hilliard equation is straightforward. (iii) If G
is even (still in the absence of the standard nonlinearity), we
show that there exists no steady-state periodic solution, as

attested to by numerical simulations for 5=H)2€ [9].

II. MODIFIED KS EQUATION
A. The method
We study the following equation:

H,+cH, .+ H +aHH, + BO,G(H) =0, (2)

XXXX

which reduces to the standard Kuramoto-Sivashinsky equa-

tion when G=0. A rescaling of x, ¢, and H always allows one
to reduce the equation to a one-parameter equation, which
can be absorbed into a redifinition of G. However, for the
sake of clarity, we do not get rid of «, so that we write

H+H_ +H, +aHH +dG(H)=0. (3)

It is also useful to rewrite Eq. (3) using the variable u,
with u,=H:

Uy + Uy + Uy + gui +G(u,,) =0, (4)
where the integration constant v, can be canceled out by the
transformation u(x,t) — u(x,t)—vgt.

Within the H formulation, the average d{H)/dt vanishes,
because Eq. (3) has the conserved form H,=—4,(---). Within
the u formulation,

du) _

" -{%m@+@wmﬂ=u 5)

For interfacial problems u is the interface profile, and there-
fore v represents the average speed of the front. For steady-
state solutions v is related nonlinearly to the front profile
ug(x); see Eq. (5).

We start from a stationary solution of period ¢, H(x), and
perturb it by adding h(x)exp(—wt). The function h(x) there-
fore satisfies the linear equation

hxxxx + hX)C + a(hH)x + (th(Hx))x = wh, (6)

where G=G' and whose coefficients are periodic with period
N=2m/q. According to the Floquet-Bloch theorem, the solu-
tion has the form A(x)=exp(iKx)F(x), where F(x) has the
same period as H(x).
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We are interested in weak modulations of long
wavelength—i.e., with K<<q. It is therefore convenient to
introduce the reduced wave vector Q=K/g and the phase
¢=gx. The equation determining the steady state H(¢) is

4*Hpggp+ A°Hyp+ aqHH 4+ ¢°HyyG(qH ) =0, (7)
and Eq. (6) reads
G*hggps+ hog+ qa(hH) 4+ ¢*(hyG(gH y) ¢ = Lh = wh,
(8)

with h(¢)=exp(iQB)F ().
The final step is to expand both w and F(¢) in powers of

0,
F(¢)=Fy(¢) + QF (¢) + Q*F5 () + -+~ , )

w:a)o+le+Q2w2+--- , (10)

and to solve Eq. (8) at the lowest orders in Q.

B. Zeroth order

The differential equation determining the steady state
H(x) does not depend explicitely on x, so that H(x+x,) is a
solution as well. This symmetry implies that Lh=wh [see
Eq. (8)] is solved by h=H, and w=0, as can be easily
checked by taking the ¢ derivative of Eq. (7). Since the
zeroth-order equation is simply

£F0=O, (11)

we obtain Fo=H

C. First order

The equation for F; reads
LF,=wH —ig[4¢°H" +2¢9(1 + G)H"
+(aH + ¢*H'G")H'], (12)

where we have used the shorthand notation H'=H & H’
=Hg,.... If we differentiate Eq. (7) with respect to g, we get
a similar equation,

_ 3y " ’ 20y gn
LHq_—(4qH +2gH" + aHH' +3Bg°H'H"), (13)

where H, is the derivative of H with respect to g.

The comparison of Egs. (12) and (13) suggests one to
look for F; in the form F\=iqH +c, where c is a constant.
We easily find c=w;/(aq), so that

w
Fy=—+iqH,,. (14)
aq

This result shows that in the absence of the standard nonlin-

earity, =0, w; should vanish whatever G is.

We might have started with an even more general Equa-
tion (3), replacing the standard nonlinearity («wHH,)
=r9x(§H2) with 9,P(H). The term aHH' on the right-hand
sides of Egs. (12) and (13) would be replaced by P(H)H',

with P=P’. However, in the general case P’ is not a con-
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stant: therefore, it is not possible to look for a solution F
=igH  +c.

D. Second order
The equation for F, has the form
LF,+q*(1+ G)(= Fy+2iF)) + (aqgH + ¢°H"G")iF,
= wyFy+ o F (15)
or
LFy=wH' +iqoH,+q’H' +2¢°H, - iwH
—i(w/a)g’H"G' (gH') + w*/(aq) + ¢°G(gH')H'
+2¢°G(qH")H, + ag’HH, + ¢*"H"G' (¢H')H,,.
(16)
Now we take the 27 average of the previous equation,
getting

2
g T TAGH )+ 24 (Gl Hy )+ aq?HH,)

+¢"(H"G'(¢qH")H,) = 0. (17)

Finally, we obtain

d| « ~ d
wi=- aq3@[5<H2>+<G(qH’)>} = aq3d—qv. (18)

This result proves that w;=0 if @=0, whatever the func-

tion G is. Consider the case ar# 0 (we are at liberty to choose
a>0). Since w<<0 signals an instability, one sees that if
fiv >0, the periodic solution is unstable, because there is a
real solution w;<0. This generalizes the result of [1], ob-
tained for the pure KS equation, to the higher-order KS equa-
tion. It is only in the pure KS limit that the spectrum of
stability is related to the slope of the steady amplitude. In the
higher-order equation, however, this ceases to be the case.
Instead we should replace the amplitude by the drift velocity,
a quantity which can be still obtained from pure steady-state
considerations. It is to be noted that the criterion regarding
the slope of v, div >(), is a sufficient condition for instabil-
ity. In the opposite limit no conclusion can be drawn, since
there is a need to push the calculation to the next order. This
has not been checked yet, but it is likely that the analysis is
too much involved in order to lend itself to analytical tracta-
bility.

E. Determination of w,

The determination of w, implies the resolution of the dif-
ferential equation

Liu=0, (19)
where
Cu = MXXXX + MXX + a(Hu)X + [G(H,)ux]x (20)

and
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Liu=uy .+, — aHu, +[GH u,],. (21)

The equation Lu=0 is solved by u=H’, but we do not
know the solution of £'u=0. L7+ £ because of the « term.
If a=0, such a term is absent and £7=L. This case is treated
in the next subsection.

F. The case a=0

Stationary solutions are determined [see Eq. (3)] from the
condition

o _
O| Hyxx + H + 5H2 + G(Hx) =0, (22)
which can be integrated once, giving
a o~
H. . .+H+ EH +G(H,)=C, (23)

where C is a constant.
If =0, we can set h=H, and stationary solutions are
given by the equation

h,=-h-G(h)+C. (24)

The equation for H(x) admits periodic solutions only if
h(x) itself is periodic and has zero average for any initial
condition (such that the solution is bounded). This requires

that C=0 and G(h) be an odd function.
In the same limit a=0, the full PDE (3) is written

Ht= - ax[Hxxx+Hx+ 5(Hx)]’ (25)

and taking the spatial derivative of both terms, we get

ht == axx[hxx +h+ é(h)]’ (26)

where h=H,, as before. We have therefore obtained a gener-
alized Cahn-Hilliard equation, whose dynamical behavior is
known to show coarsening if and only if the wavelength N\ of
steady states is an increasing function of their amplitude A
[5]. We have reobtained the same result following the
method discussed in this section (calculations are not
shown).

III. FINAL REMARKS

The present and recent work [4,5] has the main objective
to find general criteria to understand and anticipate the dy-
namics of nonlinear systems by the analysis of steady-state
solutions only. For some important classes of PDE’s, which
have the common feature of a single-value A(A) function, the
criterion is based on the sign of the derivative \'(A). In this
Brief Report we have considered a modified, generalized
Kuramoto-Sivashisnky equation, where the N\(A) curve is not
single value, because it displays a fold. We have therefore
established a different criterion, based on dv/dgq, the deriva-
tive of the interface velocity on the wave vector g of the
steady state.
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If the standard KS nonlinearity is absent, we can say
more. If the nonlinearity 4.G(H,) corresponds to an even
function G, the equation does not support periodic stationary
solutions and this prevents coarsening in principle: we have
a pattern of fixed wavelength and diverging amplitude.
Instead, if G is an odd function, the equation falls into a
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previously studied class, the generalized Cahn-Hilliard
equation, which can show different behaviors according
to the form of A(A). Finally, it is an important task for fu-
ture investigations to see whether or not information of
the types presented here and in [4,5] has analogs in higher
dimensions.
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